Capacity of weakly \((d,k)\)-constrained sequences

Kees A. Schouhamer Immink
Institute for Experimental Mathematics, Ellernstrasse 29,
45326 Essen, Germany.
immink@exp-math.uni-essen.de

Augustus J.E.M. Janssen
Philips Research Laboratories,
WY 81, Prof. Holtenlaan 4, 5656
ajem.janssen@philips.com

Abstract — In the presentation we find an analytic expression for the maximum of the normalized entropy
\[-\sum_{i \in T} p_i \ln p_i / \sum_{i \in T} p_i,\]
where the set \(T\) is the disjoint union of sets \(S_n\) of positive integers that are assigned probabilities \(p_n, \sum_n p_n = 1\). This result is applied to the computation of the capacity of weakly \((d,k)\)-constrained sequences that are allowed to violate the \((d,k)\)-constraint with small probability.

I. PROBLEM DESCRIPTION AND RESULTS

Let \(T\) be a set of positive integers, and assume that \(T\) is the disjoint union of a (finite or infinite) number of non-empty sets \(S_n, n \in M\). Also assume that there are given numbers \(p_n \geq 0, n \in M\), with \(\sum_n p_n = 1\). We show the following result.

Theorem: The maximum of

\[
H := -\sum_{i \in T} p_i \ln p_i / \sum_{i \in T} p_i
\]

(In : natural logarithm) under the constraints that \(p_i \geq 0, \sum_{i \in S_n} p_i = p_n, n \in M\), equals \(z_0\), where \(z_0 > 0\) is the unique solution \(z\) of the equation

\[
-\sum_{n \in M} p_n \ln Q_n(z) = -\sum_{n \in M} p_n \ln p_n
\]

with \(z > 0\)

\[
Q_n(z) := \sum_{i \in S_n} e^{-i z}, n \in M.
\]

Moreover, the optimal \(p_i\) are given by

\[
p_i = \frac{p_n}{Q_n(z_0)} e^{-i z_0}, i \in S_n, n \in M,
\]

and for these \(p_i\) we have that

\[
\sum_{i \in T} i p_i = \frac{d}{dz} \left[-\sum_{n \in M} p_n \ln Q_n(z(z_0))\right].
\]

As an application of this result we consider weakly constrained \((d,k)\) sequences [1]. A binary \((d,k)\)-constrained sequence has by definition at least \(d\) and at most \(k\) 'zeros' between consecutive 'ones'. Weakly constrained codes produce sequences that violate the specified constraints with a small probability. It is argued that if the channel is not free of errors, it is pointless to feed the channel with perfectly constrained sequences. A \((d,k)\)-constrained sequence can be thought to be composed of 'phrases' \(10^i\), \(d \leq i \leq k\), where \(0^i\) means a series of \(i\) 'zeros'. In order to compute the channel capacity, i.e. the maximum \(z_0/ln 2\) of the entropy \(H/ln 2\), we define

\[
T = \{1, \ldots, d\} \cup \{d + 1, \ldots, k + 1\}
\]

\[
\cup \{k + 2, k + 3, \ldots\} =: S_1 \cup S_2 \cup S_3,
\]

where \(d = 0, 1, \ldots\), and \(k = d + 1, d + 2, \ldots\) are given, and we compute the capacity for the case that the probabilities \(P_1, P_2\) assigned to the sets \(S_1, S_3\) are both small. Clearly, the quantities \(P_1\) and \(P_2\) denote the probabilities that phrases are transmitted that are either too short or too long, respectively. We find that the familiar capacities of \((d,k)\)-constrained sequences [2] are approached from above as \(P_1, P_2 \to 0\) with an error \(A(P_1 \ln P_1 + P_2 \ln P_2)\), where we can evaluate the \(A\) explicitly. We obtain a similar result for the case that \(T\) is as in (6) with \(S_1, S_3\) merged into a single set \(S_1 \cup S_3\). Further results are published in [3].

Conclusions

We have presented an analytic expression for the maximum of the normalized entropy \(-\sum_{i \in T} i p_i \ln p_i / \sum_{i \in T} i p_i\), under the condition that \(T\) is the disjoint union of sets \(S_n\) of positive integers that are assigned probabilities \(p_n, \sum_n p_n = 1\). We computed the capacity of weakly \((d,k)\)-constrained sequences that are allowed to violate the \((d,k)\)-constraint with given probability.

References

