Realization of Fast Pairings I

Frederik Vercauteren

Pairings in Arithmetic Geometry and Cryptography
Notation

- Base field \mathbb{F}_q with $q = p^m$.
- E elliptic curve defined over \mathbb{F}_q.
- Point sets $E(\mathbb{F}_{q^n})$ are abelian groups.
- Point at infinity $\mathcal{O} \in E(\mathbb{F}_q)$ is neutral element.
- $E(\mathbb{F}_{q^n})[r]$ subgroup of points of order r.
- Assume: exists subgroup $E(\mathbb{F}_q)[r]$ of large prime order r with $\gcd(r, q) = 1$.
- Embedding degree k with $r \| (q^k - 1)$ and k minimal.
- Note that $\mu_r \subseteq \mathbb{F}_{q^k}^*$, but $\mathbb{F}_p(\mu_r)$ could be contained in smaller extension of \mathbb{F}_p.
Miller functions

- Let $P \in E$ and $n \in \mathbb{N}$.
- A Miller function $f_{n,P}$ is any function in $\mathbb{F}_q(E)$ with divisor
 \[
 \text{div}(f_{n,P}) = n(P) - ([n]P) - (n - 1)(\infty)
 \]
- $f_{n,P}$ is determined up to a constant $c \in \mathbb{F}_q^*$.
- $f_{n,P}$ has a zero at P of order n.
- $f_{n,P}$ has a pole at $[n]P$ of order 1.
- $f_{n,P}$ has a pole at ∞ of order $(n - 1)$.
- For every point $Q \neq P, [n]P, \infty$, we have $f_{n,P}(Q) \in \mathbb{F}_q^*$.
Tate pairing

Definition of Tate pairing:

\[\langle \cdot, \cdot \rangle_r : E(\mathbb{F}_{q^k})[r] \times E(\mathbb{F}_{q^k})/rE(\mathbb{F}_{q^k}) \to \mathbb{F}^*_q/(\mathbb{F}^*_q)^r \]

Let \(P \in E(\mathbb{F}_{q^k})[r] \) and \(f_{r,P} \in \mathbb{F}_{q^k}(E) \) with

\[\text{div}(f_{r,P}) = r((P) - (\mathcal{O})) \]

\(Q \in E(\mathbb{F}_{q^k}) \) and \(R \in E(\mathbb{F}_{q^k}) \) with \(\{Q + R, R\} \cap \{P, \mathcal{O}\} = \emptyset \).

\[\langle P, Q \rangle_r = f_{r,P}((Q + R) - (R)) \cdot (\mathbb{F}^*_q)^r \]

\[= f_{r,P}(Q + R)/f_{r,P}(R) \cdot (\mathbb{F}^*_q)^r \]

Tate pairing is bilinear and non-degenerate
Miller’s algorithm

- Use double-add algorithm to compute $f_{n,P}$ for any $n \in \mathbb{N}$.
- Exploit relation:

\[
\begin{align*}
\quad f_{m+n,P} &= f_{m,P} \cdot f_{n,P} \cdot \frac{l_{[n]P,[m]P}}{v_{[n+m]P}} \\
\end{align*}
\]

- $l_{[n]P,[m]P}$: the line through $[n]P$ and $[m]P$
- $v_{[n+m]P}$: the vertical line through $[n + m]P$
- Note that $v_{[n+m]P}(Q) = x(Q) - x([n + m]P)$
Miller’s algorithm

Input: $P, Q \in E(\mathbb{F}_{q^k})$ and integer $n \in \mathbb{N}$
Output: $f_{n, P}(Q)$

1. $B \leftarrow \text{Bits}(n)$, $T \leftarrow P$, $f \leftarrow 1$
2. For $i := \#B - 1$ to 1 do
3. \hspace{1em} $l, v \leftarrow \text{DoubleLines}(T)$
4. \hspace{1em} $f \leftarrow f^2 \frac{l(Q)}{v(Q)}$
5. \hspace{1em} $T \leftarrow [2] T$
6. \hspace{1em} If $B[i] = 1$ Then
7. \hspace{2em} $l, v \leftarrow \text{AddLines}(T, P)$
8. \hspace{1em} $f \leftarrow f \frac{l(Q)}{v(Q)}$
9. \hspace{1em} $T \leftarrow T + P$
10. Return f
Tate pairing: simplify evaluation

- Need two evaluations of Miller function to compute

\[
f_{r,P}(Q + R)/f_{r,P}(R)
\]

- Ideally, would simply like to compute \(f_{r,P}(Q)\)

- Let \(u_\infty\) be a fixed \(\mathbb{F}_q\)-rational uniformizer at \(\mathcal{O}\)

- For \(f \in \overline{\mathbb{F}}_q(E)^*,\) define \(l_{c_\infty}(f)\) as the leading coefficient of \(f\) as a Laurent series in \(u_\infty\).

- Lemma: if \(l_{c_\infty}(f_{r,P})\) is an \(r\)-th power, then for \(Q \neq P, \mathcal{O}\)

\[
\langle P, Q \rangle_r = f_{r,P}(Q) \cdot (\mathbb{F}_q^*)^r
\]

- \(l_{c_\infty}(f_{r,P})\) being an \(r\)-th power is independent of uniformizer chosen
Tate pairing: simplify evaluation

- Can always make slight adaptation of functions used in Miller’s algorithm to normalise.
- By definition of the embedding degree we have $\gcd(r, q^d - 1) = 1$ for all positive integers $d | k$ and $d < k$.
- So all elements of the fields \mathbb{F}_{q^d} are r-th powers.
- Conclusion: for $k > 1$ and if P is chosen in a strict subfield $\mathbb{F}_{q^d} \subset \mathbb{F}_{q^k}$, then $f_{r,P}$ is automatically normalised.
- Note: if $k > 1$, then either P or Q has to be defined over \mathbb{F}_{q^k}, else pairing will evaluate to 1.
Reduced Tate pairing

By definition value of $\langle \cdot, \cdot \rangle_r$ only defined up to r-th powers.

$$\langle \cdot, \cdot \rangle_r : E(\mathbb{F}_{q^k})[r] \times E(\mathbb{F}_{q^k}) / rE(\mathbb{F}_{q^k}) \rightarrow \mathbb{F}_{q^k}^\times / (\mathbb{F}_{q^k}^\times)^r$$

In practice: want unique output of the function

Reduced Tate pairing $t_r : E(\mathbb{F}_{q^k})[r] \times E(\mathbb{F}_{q^k}) / rE(\mathbb{F}_{q^k}) \rightarrow \mu_r$

is defined as

$$t_r(P, Q) = \langle P, Q \rangle_r^{(q^k - 1)/r}$$

Can ignore all factors that are r-th powers, so if $k > 1$, can ignore all factors in \mathbb{F}_{q^d} with $d|k$, $d < k$.
Reduced Tate pairing: changing scalar r

- Let $N = hr$ be a multiple of N with $N|q^k - 1$, then
 \[t_r(P, Q) = \langle P, Q \rangle_r^{(q^k-1)/r} = t_N(P, Q) = \langle P, Q \rangle_N^{(q^k-1)/N} \]

- Can work with low Hamming weight multiple of r
- Small characteristic p: multiplication by p usually has special form
- Choose multiple of r with low Hamming weight in base p
Reduction Tate pairing: denominator elimination

- In Miller’s algorithm, all denominators are of the form $x(Q) - x([n]P)$

- So, if $x(Q)$ and $x(P)$ defined over \mathbb{F}_{q^d} with $d|k$, $d < k$, then can ignore denominators

- Can choose $P \in E(\mathbb{F}_q)$, but can we choose Q such that $x(Q) \in \mathbb{F}_{q^d}$ with $d|k$, $d < k$?

- Note: if $P \in E(\mathbb{F}_q)$, then Q has to be in

$$E(\mathbb{F}_{q^k}) \setminus \bigcup_{d|k, d < k} E(\mathbb{F}_{q^d})$$

else pairing will be 1.

- So only when k is even and $x(Q) \in \mathbb{F}_{q^{k/2}}$.
r-torsion and Frobenius

- Denote π_q Frobenius endomorphism $(x, y) \mapsto (x^q, y^q)$.
- $[m]$ multiplication-by-m endomorphism.
- $\mathbb{Z}[\pi_q] \subseteq \text{End}(E)$, $\pi_q^2 - [t] \pi_q + q = 0$, $|t| \leq 2\sqrt{q}$.
- Since $r \nmid \# E(\mathbb{F}_q)$, π_q has eigenvalues 1 and q on $E[r]$.
- Embedding degree k is precisely such that q-eigenspace of π_q is \mathbb{F}_{q^k}-rational.

\[G_1 = E[r] \cap \text{Ker}(\pi_q - [1]) \quad G_2 = E[r] \cap \text{Ker}(\pi_q - [q]) \]

- If $k > 1$, then $q \not\equiv 1 \pmod{r}$ and thus $E[r] = E(\mathbb{F}_{q^k})[r]$.
- For $k = 1$, either $E[r]$ is \mathbb{F}_q-rational or \mathbb{F}_{q^r}-rational.
Representing G_2: supersingular curves

- Recall: E is supersingular if and only if $E[p^e] = \{0\}$, else E is called ordinary.
- If E is ordinary, then $\text{End}(E)$ is commutative and thus all endomorphisms ψ are defined over field of definition of E.
- So: if $P \in E(\mathbb{F}_q)$ then $\psi(P) \in \mathbb{F}_q$.
- If E is supersingular, then $\text{End}(E)$ is non-commutative and non-rational endomorphisms exist, i.e. distortion maps.
- For $k > 1$, can always find $\psi \in \text{End}(E)$ such that $\psi(G_1) = G_2$

- Conclusion: obtain pairing on $G_1 \times G_1$.
Representing \mathbb{G}_2: supersingular curves

<table>
<thead>
<tr>
<th>k</th>
<th>Field \mathbb{F}_q</th>
<th>Curve E</th>
<th>Distortion map $(x, y) \mapsto$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>$p \equiv 2 \pmod{3}$</td>
<td>$y^2 = x^3 + a$</td>
<td>$(\xi_3 x, y)$</td>
</tr>
<tr>
<td>2</td>
<td>$p \equiv 3 \pmod{4}$</td>
<td>$y^2 = x^3 + ax$</td>
<td>$(-x, iy)$</td>
</tr>
<tr>
<td>4</td>
<td>$q = 2^m$, m odd</td>
<td>$y^2 + y = x^3 + x + b$</td>
<td>$(\alpha^2 x + \beta^2, y + \alpha^2 \beta x + \beta)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$\alpha^2 + \alpha + 1 = 0$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$\beta^2 + (\alpha + 1)\beta + 1 = 0$</td>
</tr>
<tr>
<td>6</td>
<td>$q = 3^m$, m odd</td>
<td>$y^2 = x^3 - x \pm 1$</td>
<td>$(\alpha - x, iy)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$\alpha^3 - \alpha - (\pm 1) = 0$</td>
</tr>
</tbody>
</table>
Representing \mathbb{G}_2: ordinary curves

- Let E and E' be ordinary elliptic curves defined over \mathbb{F}_q.
- We call E' a twist of E of degree d if there is an isomorphism $\psi : E' \rightarrow E$ defined over \mathbb{F}_{q^d}, and d is minimal.
- A twisting isomorphism ψ defines
 - a vector space isomorphism $E'(\mathbb{F}_{q^d})[r] \rightarrow E(\mathbb{F}_{q^d})[r]$.
 - a ring isomorphism $\text{End}(E') \rightarrow \text{End}(E)$, $\phi \mapsto \psi \phi \psi^{-1}$.
 - carries the q^d-power Frobenius of E' to that of E, hence $\psi \pi_{q^d} \psi^{-1} = \pi_{q^d}$.
 - automorphism of E: $\psi^\sigma \circ \psi^{-1}$, where ψ^σ is ψ with coefficients raised to q-th power.
- so for $p \geq 5$, only $d = 2, 3, 4, 6$ are possible.
Representing \mathbb{G}_2: ordinary curves

- For $p \geq 5$, set of twists of E is isomorphic with $\mathbb{F}_q^*/(\mathbb{F}_q^*)^d$
 with $d = 2$ if $j(E) \neq 0, 1728$, $d = 4$ if $j(E) = 1728$ and $d = 6$ if $j(E) = 0$.
- Let $D \in \mathbb{F}_q^*$, then the twists corresponding to $D \mod (\mathbb{F}_q^*)^d$
 are given by

 - $d = 2 \quad y^2 = x^3 + a/D^2x + b/D^3 \quad (x, y) \mapsto (Dx, D^{3/2}y)$
 - $d = 4 \quad y^2 = x^3 + a/Dx \quad (x, y) \mapsto (D^{1/2}x, D^{3/4}y)$
 - $d = 3, 6 \quad y^2 = x^3 + b/D \quad (x, y) \mapsto (D^{1/3}x, D^{1/2}y)$
Representing \mathbb{G}_2: ordinary curves

- Let E have a twist of degree d
- Denote E_i for $i = 0, \ldots, d-1$ the twists of E
- Assume that $r > 6$ satisfies $r \parallel \#E(\mathbb{F}_q)$ and $r^2 \parallel \#E(\mathbb{F}_{q^d})$, then there exists a unique twist E_i of degree d such that $r \parallel \#E_i(\mathbb{F}_q)$.
- Let $z = \gcd(k, d)$ and $e = k / z$, so degree z twist E' over \mathbb{F}_{q^e} exists with $r \mid \#E'(\mathbb{F}_{q^e})$.
- Let \mathbb{G}'_2 be the unique subgroup of order r of $E'(\mathbb{F}_{q^e})$ and denote $\phi_z : E' \to E$ the twisting isomorphism, then

$$\mathbb{G}_2 = \phi_z(\mathbb{G}'_2).$$

- Conclusion: obtain pairing on $\mathbb{G}_1 \times \mathbb{G}_2$
Representing \mathbb{G}_2: use of twists

- **Denominator elimination:**
 - For $k > 1$ even, have quadratic twist of E over $\mathbb{F}_{q^k/2}$
 - Note that for k even, if twisting isomorphism maps x-coordinate into $\mathbb{F}_{q^k/2}$ then denominator elimination applies.

- **Faster pairing on $\mathbb{G}_2 \times \mathbb{G}_1$**
 - Miller’s algorithm corresponds to computing rQ with $Q \in \mathbb{G}_2$
 - Can instead compute rQ' with $Q' \in \mathbb{G}_2'$ and then use twisting isomorphism
Reduced Tate pairing: final exponentiation

- Final exponentiation is $(q^k - 1)/r$
- Use the algebraic factorisation of $x^k - 1 = \prod_{d|k} \Phi_d(x)$ with Φ_d the d-th cyclotomic polynomial
- Since k is minimal, we have $r|\Phi_k(q)$
- Final exponentiation consists of easy and hard part

$$q^k - 1 = \left[\prod_{d|k, d<k} \Phi_d(q) \right] \cdot \frac{\Phi_k(q)}{r}$$

- Easy part consists of fast q-th powering (plus an inversion)
- Express hard part in base p and use multi-exponentiation
First milestone for fast pairings

- Take curve E with even k and a degree d twist over $\mathbb{F}_{q^{k/d}}$ giving group $G_2 = \phi(G'_2)$
- Pairing on $G_1 \times G'_2$ computed as

$$t_r(P, Q') = f_{r,P}(\phi(Q'))^{(p^k-1)/r} = t_N(P, Q') = f_{N,P}(\phi(Q'))^{(p^k-1)/N}$$

- No denominators in computation
- r or $N = hr$ of low Hamming weight
- Small characteristic p: work in base p
- Clever final exponentiation
Eta pairing

- Pairing on supersingular curves defined on $\mathbb{G}_1 \times \mathbb{G}_1$
- Distortion map $\psi : \mathbb{G}_1 \rightarrow \mathbb{G}_2$
- Definition: let $T = t - 1$, with $\#E(\mathbb{F}_q) = q + 1 - t$, then

 $$\eta_T : \mathbb{G}_1 \times \mathbb{G}_1 : (P, Q) \mapsto \eta_T(P, Q) = f_{T,P}(\psi(Q))$$

defines a bilinear pairing
- Let $N = \gcd(T^k - 1, q^k - 1)$ and $T^k - 1 = LN$,

 $$t_r(P, Q)^L = \eta_T(P, Q)^{c(q^k - 1)/N}$$

where $c = \sum_{i=0}^{k-1} T^{k-1-i} q^i \equiv kq^{k-1} \mod r$
- for $r \nmid L$, the eta pairing is non-degenerate

Frederik Vercauteren Realization of Fast Pairings I
Eta pairing: proof sketch

- Step 1: prove that

\[t_r(P, Q)^L = f_{T_k, P}^{(q^k - 1)/N} \]

by considering

\[t_r(P, Q)^L = f_{N, P}(Q)^L(q^k - 1)/N = f_{L N, P}(Q)(q^k - 1)/N \]
\[= f_{T^{k-1}, P}(Q)(q^k - 1)/N \]

- Step 2: prove that (exercise)

\[f_{T_k, P} = f_{T^k, P}^{-1} f_{T, T P}^{-1} \cdots f_{T, T^{k-1} P} \]
Eta pairing: proof sketch

- By definition of G_1 and G_2 we have

$$\forall P \in G_1 : \pi_q(P) = P \quad \text{and} \quad \forall Q \in G_2 : \pi_q(Q) = [q]Q$$

- Dual of π_q is called Verschiebung and satisfies

$$\pi_q \circ \hat{\pi}_q = [q]$$

- It follows that on G_1 and G_2 we have

$$\forall P \in G_1 : \hat{\pi}_q(P) = [q]P \quad \text{and} \quad \forall Q \in G_2 : \hat{\pi}_q(Q) = Q$$

- So for $P \in G_1$ we have $[T]P = \hat{\pi}_q(P)$
For purely inseparable endomorphism ψ on E we can take

$$f_{n, \psi}(P) \circ \psi = f_{n, P}^{\deg(\psi)}$$

Apply this to $\hat{\pi}_q^i$, then

$$f_{T, \hat{\pi}_q^i}(P) \circ \hat{\pi}_q^i = f_{T, P}^{q_i}$$

Since $\hat{\pi}_q(Q) = Q$, we conclude that

$$f_{T, [T^i]_P}(Q) = f_{T, P}^{q_i}(Q)$$

Substituting in expression for $f_{T^k, P}(Q)$ finishes proof
Second milestone for fast pairings

- Take supersingular curve E with distortion map

 $$\psi : \mathbb{G}_1 \rightarrow \mathbb{G}_2$$

- Let $T = t - 1$, with $\# E(\mathbb{F}_q) = q + 1 - t$

- Pairing on $\mathbb{G}_1 \times \mathbb{G}_1$ computed as

 $$\eta_T(P, Q) = f_{T,P}(\psi(Q))^{(p^k-1)/r}$$

- Miller loop has half length of original loop

- No denominators in computation

- Clever final exponentiation
Questions?