An efficient attribute based broadcast scheme

David Lubicz, Thomas Sirvent
david.lubicz@univ-rennes1.fr
thomas.sirvent@m4x.org

CELAR - IRMAR
Plan of the talk

1. Context
 - Broadcast encryption
 - Efficiency of standard schemes
 - Attributes

2. The scheme
 - Introduction
 - Principles
 - Performance
Plan of the talk

1. Context
 - Broadcast encryption
 - Efficiency of standard schemes
 - Attributes

2. The scheme
 - Introduction
 - Principles
 - Performance
A emitter intends to send securely and efficiently the same message to a large number of receivers:
Wide range of scenarios and performances requirements

Security requirements:
- users can be added or removed securely and efficiently;
- dropped users can not read subsequent traffic even if they share their secret information.

Performance requirements:
- time for setup;
- storage space for each user;
- number of transmissions required for setup, rekey and maintenance.
In the case of a revocation, some users are removed from the set of receivers (for example when their decryption keys are compromised):
In the case of a **permanent revocation**, the decryption keys are updated. The revoked users are not able anymore to obtain the messages sent by the emitter:
Temporary revocation

When permanent revocations are used (stateful schemes),
- receivers must remain online,
- receivers must store and use new decryption keys.

To avoid these limitations, it is possible to use stateless schemes, where revocations are temporary:
- in the encryption process, the emitter chooses the set of receivers,
- only members of this set may decrypt the message.
A broadcast scheme is given by:

- an **initialisation** function (for key generation),
- a **encryption** mechanism,
- a **decryption** mechanism.

→ Permanent revocation: a mechanism to add or remove users need to be provided.

→ Temporary revocation: the encryption scheme have to take into account of a set of revoked users.

Security of a broadcast scheme: Is an adversary controlling revoked users able to distinguish two ciphertexts obtained from two different chosen plaintext?
Description of a broadcast scheme

A broadcast scheme is given by:

- an **initialisation** function (for key generation),
- a **encryption** mechanism,
- a **decryption** mechanism.

→ Permanent revocation: a mechanism to add or remove users need to be provided.

→ Temporary revocation: the encryption scheme have to take into account of a set of revoked users.

Security of a broadcast scheme: Is an adversary controlling revoked users able to distinguish two ciphertexts obtains from two different chosen plaintext?
Description of a broadcast scheme

A broadcast scheme is given by:

- an **initialisation** function (for key generation),
- a **encryption** mechanism,
- a **decryption** mechanism.

→ Permanent revocation: a mechanism to add or remove users need to be provided.

→ Temporary revocation: the encryption scheme have to take into account of a set of revoked users.

Security of a broadcast scheme: Is an adversary controlling revoked users able to distinguish two ciphertexts obtained from two different chosen plaintext?
Description of a broadcast scheme

A broadcast scheme is given by:

- an *initialisation* function (for key generation),
- a *encryption* mechanism,
- a *decryption* mechanism.

→ Permanent revocation: a mechanism to add or remove users need to be provided.

→ Temporary revocation: the encryption scheme have to take into account of a set of revoked users.

Security of a broadcast scheme: Is an adversary controlling revoked users able to distinguish two ciphertexts obtains from two different chosen plaintext?
With permanent revocation, we have to maintain a key shared by all the privileged users. A particular structure is used on the set of receivers so that adding or the revocation of a user is efficient.

In term of bandwidth,

- sending a message is efficient,
- adding or revoking a user is difficult.

A broadcast encryption scheme with permanent revocation is well adapted for a small small set of receivers, stable enough in the time.
With permanent revocation, we have to maintain a key shared by all the privileged users. A particular structure is used on the set of receivers so that adding or the revocation of a user is efficient.

In term of bandwidth,

- sending a message is efficient,
- adding or revoking a user is difficult.

A broadcast encryption scheme with permanent revocation is well adapted for a small set of receivers, stable enough in the time.
Permanent revocation broadcast scheme

With permanent revocation, we have to maintain a key shared by all the privileged users. A particular structure is used on the set of receivers so that adding or the revocation of a user is efficient.

In term of bandwidth,

- sending a message is efficient,
- adding or revoking a user is difficult.

A broadcast encryption scheme with permanent revocation is well adapted for a small small set of receivers, stable enough in the time.
All the users are placed at leaves of a tree.

Each node correspond to a specific key: a user knows the keys corresponding to the nodes between its leave and the root.
Permanent revocation broadcast scheme

Adding a user:

Revocation of a user:
Temporary revocation broadcast scheme

With a temporary revocation, a particular structure is used for the set of all users so as to allow an efficient encryption.

In term of bandwidth,
 • sending a message is expensive,
 • a variation of the set of privileged users is free.

Temporary broadcast encryption is well adapted for a small set of receivers or a small set of revoked users, with frequent modification of the set of privileged users.
Temporary revocation broadcast scheme

With a temporary revocation, a particular structure is used for the set of all users so as to allow an efficient encryption.

In term of bandwidth,

- sending a message is expensive,
- a variation of the set of privileged users is free.

Temporary broadcast encryption is well adapted for a small set of receivers or a small set of revoked users, with frequent modification of the set of privileged users.
Temporary revocation broadcast scheme

With a temporary revocation, a particular structure is used for the set of all users so as to allow an efficient encryption.

In term of bandwidth,

- sending a message is expensive,
- a variation of the set of privileged users is free.

Temporary broadcast encryption is well adapted for a small set of receivers or a small set of revoked users, with frequent modification of the set of privileged users.
Temporary revocation broadcast scheme

All the users are placed on the leaves of a tree.

In this structure a key corresponds to a couple of nodes of the tree: it is known from the users descending from the first node which are not descendant of the second node.
In concrete applications of broadcast encryption schemes, users have particular characteristics (called attributes) which could be used:

<table>
<thead>
<tr>
<th>Id</th>
<th>Name</th>
<th>Subscription</th>
<th>Town</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Alice</td>
<td>Cinema</td>
<td>Jan 2008</td>
</tr>
<tr>
<td>2</td>
<td>Bob</td>
<td>Sports</td>
<td>Aug 2009</td>
</tr>
<tr>
<td>3</td>
<td>Charlie</td>
<td>Series</td>
<td>May 2008</td>
</tr>
<tr>
<td>4</td>
<td>Dan</td>
<td>Information/Cinema</td>
<td>May 2008</td>
</tr>
<tr>
<td>5</td>
<td>Eve</td>
<td>Sports</td>
<td>Jan 2008</td>
</tr>
</tbody>
</table>

One can also consider different content providers using the same receivers. The users have their attributes dedicated to their provider.
We would like to select or revoke simultaneously users corresponding to certain attributes:

Film broadcasted in June 2008

\[
\begin{align*}
&\text{Select the users with the cinema package} \\
&\text{Exclude the expired subscriptions}
\end{align*}
\]

The goal is to be able to send efficiently messages to a set of receivers defined by their attributes. The choice a any set of receivers have to be possible.
Plan of the talk

1. Context
 - Broadcast encryption
 - Efficiency of standard schemes
 - Attributes

2. The scheme
 - Introduction
 - Principles
 - Performance
The scheme is based upon the use of perfect pairings, that is a map $e : G_1 \times G_1 \rightarrow G_2$ such that:

- (G_1, g_1) and (G_2, g_2) are cyclic groups of prime order p,
- $e(g_1, g_1) = g_2$,
- e is bilinear.
Full scheme - key generation

- We randomly choose a secret 4-uple \((\alpha, \beta, \gamma, \delta) \in ((\mathbb{Z}/p\mathbb{Z})^*)^4\).
- Each user \(u\) is associated with a secret \(s_u \in (\mathbb{Z}/p\mathbb{Z})\).
- Each attribute is associated with a public \(\mu_i \in (\mathbb{Z}/p\mathbb{Z}) \setminus \{\alpha\}\).

\[
\text{EK} = \left(g_1, \beta \gamma \delta g_1, (\mu_i, \alpha^i g_1, \alpha^i \gamma g_1, \alpha^i \delta g_1)_{0 \leq i \leq l}\right).
\]

\[
\text{dk}_u = \left(\Omega(u), (\beta + s_u) \delta g_1, \gamma s_u \prod(u) g_1, (\alpha^i \gamma \delta s_u g_1)_{0 \leq i < l(u)}\right),
\]

\[
\begin{aligned}
\Omega(u) &= \{\mu_i \in (\mathbb{Z}/p\mathbb{Z})/ \mu_i \text{ attribute of } u\}, \\
l(u) &= |\Omega(u)| \text{ is the number of attributes of } u, \\
\prod(u) &= \prod_{\mu \in \Omega(u)} (\alpha - \mu).
\end{aligned}
\]
Let Ω^N be the set of needed attributes.
Let $\Omega^R \neq \emptyset$ be the set of revoked attributes.
A user u is valid for these sets if: $\Omega^N \subset \Omega(u)$ and $\Omega^R \cap \Omega(u) = \emptyset$.

The encryption for these sets (Ω^N, Ω^R) gives:

$$\text{hdr} = \left(\Omega^N, \Omega^R, z \prod^{NR} g_1, \gamma z \prod^N g_1, (\alpha^i \delta z g_1)_{0 \leq i < l^R} \right),$$

$$K = \beta \gamma \delta z \prod^N g_2.$$
The decryption is based on a decryption key d_k_u and a header hdr:

$$
\begin{align*}
 & d_k_u = (\Omega(u), dk_1, dk_2, dk_3, 0, \ldots, dk_3, l(u) - 1), \\
 & hdr = (\Omega^N, \Omega^R, hdr_1, hdr_2, hdr_3, 0, \ldots, hdr_3, lR - 1).
\end{align*}
$$

If u is a valid receiver, extended Euclid’s algorithm gives two polynomials $V(X) = \sum_{i=0}^{l(u) - 1} v_i X^i$ and $W(X) = \sum_{i=0}^{lR - 1} w_i X^i$ such that:

$$
V(X) \prod_{\mu \in (\Omega^N \cup \Omega^R)} (X - \mu) + W(X) \prod_{\mu \in \Omega(u)} (X - \mu) = \prod_{\mu \in \Omega^N} (X - \mu).
$$

The key is obtained by:

$$
e(dk_1, hdr_2) - e \left(\sum_{i=0}^{l(u) - 1} v_i dk_3, i, hdr_1 \right) - e \left(dk_2, \sum_{i=0}^{lR - 1} w_i hdr_3, i \right).
$$
Full scheme - correctness

\[V(\alpha) \Pi^{NR} + W(\alpha) \Pi(u) = \Pi^N. \]

\[V(\alpha) = \sum_{i=0}^{l(u)-1} v_i \alpha^i \]

\[W(\alpha) = \sum_{i=0}^{l^R-1} w_i \alpha^i \]

\[dk_1 = (\beta + s_u) \delta g_1 \]
\[dk_2 = \gamma s_u \Pi(u) g_1 \]
\[dk_{3,i} = \alpha^i \gamma \delta s_u g_1 \]

\[\text{hdr}_1 = z \Pi^{NR} g_1 \]
\[\text{hdr}_2 = \gamma z \Pi^N g_1 \]
\[\text{hdr}_{3,i} = \alpha^i \delta z g_1 \]

\[e(dk_1, \text{hdr}_2) - e \left(\sum_{i=0}^{l(u)-1} v_i dk_{3,i}, \text{hdr}_1 \right) - e \left(dk_2, \sum_{i=0}^{l^R-1} w_i \text{hdr}_{3,i} \right) \]

\[\iff \quad K = \beta \gamma \delta z \Pi^N g_2. \]
Construction principles

- User u is associated to $\Pi(u)$, which is the evaluation in α of $\prod_{\mu \in \Omega(u)} (X - \mu)$.
- The header hdr is associated to Π^{NR}, which is the evaluation in α of $\prod_{\mu \in \Omega_N \cup \Omega^R} (X - \mu)$.
- The key K is associated to Π^N, which is the evaluation of $\prod_{\mu \in \Omega^N} (X - \mu)$ in α.

α is secret, the used operation must be valid on the polynomial, and not only on the values in α (following the generic group model).

The operation are constrained

- Group operation correspond to linear combination,
- Pairings correspond to a unique product of polynomials.
Construction principles

- User \(u \) is associated to \(\Pi(u) \), which is the evaluation in \(\alpha \) of \(\prod_{\mu \in \Omega(u)} (X - \mu) \).
- The header header is associated to \(\Pi^{NR} \), which is the evaluation in \(\alpha \) of \(\prod_{\mu \in \Omega^{N \cup R}} (X - \mu) \).
- The key \(K \) is associated to \(\Pi^N \), which is the evaluation of \(\prod_{\mu \in \Omega^N} (X - \mu) \) in \(\alpha \).

\(\alpha \) is secret, the used operation must be valid on the polynomial, and not only on the values in \(\alpha \) (following the generic group model).

The operation are constrained

- group operation correspond to linear combination,
- pairings correspond to a unique product of polynomials.
Construction principles

- User u is associated to $\Pi(u)$, which is the evaluation in α of $\prod_{\mu \in \Omega(u)} (X - \mu)$,
- the header hdr is associated to Π^{NR}, which is the evaluation in α of $\prod_{\mu \in \Omega^N \cup \Omega^R} (X - \mu)$,
- the key K is associated to Π^N, which is the evaluation of $\prod_{\mu \in \Omega^N} (X - \mu)$ in α.

α is secret, the used operation must be valid on the polynomial, and not only on the values in α (following the generic group model).

The operation are constrained

- group operation correspond to linear combination,
- pairings correspond to a unique product of polynomials.
Construction principles

\[V(X) \prod_{\mu \in \Omega^N \cup \Omega^R} (X - \mu) + W(X) \prod_{\mu \in \Omega(u)} (X - \mu) \approx? \prod_{\mu \in \Omega^N} (X - \mu) \]

→ \(\text{Si } \Omega(u) \cap \Omega^R \neq \emptyset \), such a relation is formally impossible.

→ If \(\Omega^N \not\subseteq \Omega(u) \), such a relation is possible. But the degrees of \(V(X) \) and \(W(X) \) are bounded (by \(l(u) - 1 \) and \(l^R - 1 \)), this relation becomes statistically improbable.
Construction principles

\[V(X) \prod_{\mu \in \Omega^N \cup \Omega^R} (X - \mu) + W(X) \prod_{\mu \in \Omega(u)} (X - \mu) \approx \prod_{\mu \in \Omega^N} (X - \mu) \]

→ If \(\Omega^N \not\subset \Omega(u) \), such a relation is formally impossible.

→ If \(\Omega^N \not\subset \Omega(u) \), such a relation is possible. But the degrees of \(V(X) \) and \(W(X) \) are bounded (by \(l(u) - 1 \) and \(l^R - 1 \)), this relation becomes statistically improbable.
Construction principles

\[V(X) \prod_{\mu \in \Omega^N \cup \Omega^R} (X - \mu) + W(X) \prod_{\mu \in \Omega(u)} (X - \mu) \approx \prod_{\mu \in \Omega^N} (X - \mu) \]

\[\rightarrow \text{Si } \Omega(u) \cap \Omega^R \neq \emptyset, \text{ such a relation is formally impossible.} \]

\[\rightarrow \text{If } \Omega^N \not\subset \Omega(u), \text{ such a relation is possible. But the degrees of } V(X) \text{ and } W(X) \text{ are bounded (by } l(u) - 1 \text{ and } l^R - 1), \text{ this relation becomes statistically improbable.} \]
Construction principle

risk 1 : Recombination of the headers ?
\[\leadsto \text{Randomisation of the headers of decryption (via } z) \]

risk 2 : Recombination of the encryption keys ?
\[\leadsto \text{Randomisation of the encryption keys (via } s_u) \]

risk 3 : None expected arithmetic operations ?
\[\leadsto \text{Strict limitation of the authorized products (via } \gamma \text{ and } \delta) \]
Construction principle

risk 1 : Recombination of the headers ?
\[\rightarrow \text{Randomisation of the headers of decryption (via } z) \]

risk 2 : Recombination of the encryption keys ?
\[\rightarrow \text{Randomisation of the encryption keys (via } s_u) \]

risk 3 : None expected arithmetic operations ?
\[\rightarrow \text{Strict limitation of the authorized products (via } \gamma \text{ and } \delta) \]
Construction principle

risk 1 : Recombination of the headers ?
\[\rightarrow \text{Randomisation of the headers of decryption (via } z) \]

risk 2 : Recombination of the encryption keys ?
\[\rightarrow \text{Randomisation of the encryption keys (via } s_u) \]

risk 3 : None expected arithmetic operations ?
\[\rightarrow \text{Strict limitation of the authorized products (via } \gamma \text{ and } \delta) \]
Performance

Size of the ciphertexts: \(\text{hdr} \) linear in \(|\Omega^N| + |\Omega^R|\).

Computations:
- Decryption: 3 pairings,
- Encryption: 1 pairing.

Size of the keys:
- \(\text{EK} \) linear in \(l \),
- \(\text{dk}_u \) linear in \(l(u) \).

Other features:
- Possible to add new users (or key renewal).

Complex logic formulas can not be implemented ("or", threshold).
Performance

Size of the ciphertexts: $\text{hdr} \text{ linear in } |\Omega^N| + |\Omega^R|$.

Computations:
- Decryption: 3 pairings,
- Encryption: 1 pairing.

Size of the keys:
- $\text{EK} \text{ linear in } l$,
- $\text{dk}_u \text{ linear in } l(u)$.

Other features:
- possible to add new users (or key renewal).

Complex logic formulas can not be implemented ("or", threshold).
Performance

Size of the ciphertexts: $\text{hdr} \ \text{linear in} \ |\Omega^N| + |\Omega^R|$.

Computations:
- Decryption: 3 pairings,
- Encryption: 1 pairing.

Size of the keys:
- E_K linear in l,
- d_{K_u} linear in $l(u)$.

Other features:
- Possible to add new users (or key renewal).

Complex logic formulas can not be implemented ("or", threshold).
Performance

Size of the ciphertexts: $\text{hdr} \text{ linear in } |\Omega^N| + |\Omega^R|$.

Computations:
- Decryption: 3 pairings,
- Encryption: 1 pairing.

Size of the keys:
- EK linear in l,
- dk_u linear in $l(u)$.

Other features:
- possible to add new users (or key renewal).

Complex logic formulas cannot be implemented ("or", threshold).
Performance

Size of the ciphertexts: \(h_{\text{dr}} \) linear in \(|\Omega^N| + |\Omega^R| \).

Computations:
- Decryption: 3 pairings,
- Encryption: 1 pairing.

Size of the keys:
- \(EK \) linear in \(l \),
- \(d_{k_u} \) linear in \(l(u) \).

Other features:
- possible to add new users (or key renewal).

Complex logic formulas can not be implemented ("or", threshold).
The End.